当前位置:w88优德官网网文章中心网站运营SEO推广 → Machine Learning:PageRank算法

Machine Learning:PageRank算法

减小字体 增大字体 作者:admin  来源:本站整理  发布时间:2016-11-17 8:33:57
PageRank算法 PageRank 谷歌算法1. PageRank算法概述PageRank,网页排名,又称网页级别Google左侧排名佩奇排名。在谷歌主导互联网搜索之前, 多数搜索引擎采用的排序方法, 是以被搜索词语在网页中的出现次数来决定排序——出现次数越多的网页排在越前面。 这个判据不能说毫无道理, 因为用户搜索一个词语, 通常表明对该词语感兴趣。 既然如此, 那该词语在网页中的出现次数越多, 就越有可能表示该网页是用户所需要的。可惜的是,这个貌似合理的方法实际上却行不大通。 因为按照这种方法, 任何一个象祥林嫂一样翻来复去倒腾某些关键词的网页, 无论水平多烂, 一旦被搜索到, 都立刻会 “金榜题名”, 这简直就是广告及垃圾网页制造者的天堂。 是Google创始人拉里·佩奇和谢尔盖·布林于1997年构建早期的搜索系统原型时提出的链接分析算法,自从Google在商业上获得空前的成功后,该算法也成为其他搜索引擎和学术界十分关注的计算模型。目前很多重要的链接分析算法都是在PageRank算法基础上衍生出来的。PageRank是Google用于用来标识网页的等级/重要性的一种方法,是Google用来衡量一个网站的好坏的唯一标准。在揉合了诸如Title标识和Keywords标识等所有其它因素之后,Google通过PageRank来调整结果,使那些更具“等级/重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量。其级别从0到10级,10级为满分。PR值越高说明该网页越受欢迎(越重要)。例如:一个PR值为1的网站表明这个网站不太具有流行度,而PR值为7到10则表明这个网站非常受欢迎(或者说极其重要)。一般PR值达到4,就算是一个不错的网站了。Google把自己的网站的PR值定到10,这说明Google这个网站是非常受欢迎的,也可以说这个网站非常重要。2. 从入链数量到 PageRank在PageRank提出之前,已经有研究者提出利用网页的入链数量来进行链接分析计算,这种入链方法假设一个网页的入链越多,则该网页越重要。早期的很多搜索引擎也采纳了入链数量作为链接分析方法,对于搜索引擎效果提升也有较明显的效果。 PageRank除了考虑到入链数量的影响,还参考了网页质量因素,两者相结合获得了更好的网页重要性评价标准。对于某个互联网网页A来说,该网页PageRank的计算基于以下两个基本假设:
数量假设:在Web图模型中,如果一个页面节点接收到的其他网页指向的入链数量越多,那么这个页面越重要。质量假设:指向页面A的入链质量不同,质量高的页面会通过链接向其他页面传递更多的权重。所以越是质量高的页面指向页面A,则页面A越重要。
利用以上两个假设,PageRank算法刚开始赋予每个网页相同的重要性得分,通过迭代递归计算来更新每个页面节点的PageRank得分,直到得分稳定为止。 PageRank计算得出的结果是网页的重要性评价,这和用户输入的查询是没有任何关系的,即算法是主题无关的。假设有一个搜索引擎,其相似度计算函数不考虑内容相似因素,完全采用PageRank来进行排序,那么这个搜索引擎的表现是什么样子的呢?这个搜索引擎对于任意不同的查询请求,返回的结果都是相同的,即返回PageRank值最高的页面。3. PageRank算法原理PageRank的计算充分利用了两个假设:数量假设和质量假设。步骤如下:
1)在初始阶段:网页通过链接关系构建起Web图,每个页面设置相同的PageRank值,通过若干轮的计算,会得到每个页面所获得的最终PageRank值。随着每一轮的计算进行,网页当前的PageRank值会不断得到更新。2)在一轮中更新页面PageRank得分的计算方法:在一轮更新页面PageRank得分的计算中,每个页面将其当前的PageRank值平均分配到本页面包含的出链上,这样每个链接即获得了相应的权值。而每个页面将所有指向本页面的入链所传入的权值求和,即可得到新的PageRank得分。当每个页面都获得了更新后的PageRank值,就完成了一轮PageRank计算。 
3.2 基本思想:如果网页T存在一个指向网页A的连接,则表明T的所有者认为A比较重要,从而把T的一部分重要性得分赋予A。这个重要性得分值为:PR(T)/L(T)其中PR(T)为T的PageRank值,L(T)为T的出链数则A的PageRank值为一系列类似于T的页面重要性得分值的累加。即一个页面的得票数由所有链向它的页面的重要性来决定,到一个页面的超链接相当于对该页投一票。一个页面的PageRank是由所有链向它的页面(链入页面)的重要性经过递归算法得到的。一个有较多链入的页面会有较高的等级,相反如果一个页面没有任何链入页面,那么它没有等级。3.3 PageRank简单计算:假设一个由只有4个页面组成的集合:A,B,C和D。如果所有页面都链向A,那么A的PR(PageRank)值将是B,C及D的和。继续假设B也有链接到C,并且D也有链接到包括A的3个页面。一个页面不能
[1] [2] [3] [4]  下一页
本文引用网址:
在下列搜索引擎中搜索“Machine Learning:PageRank算法”的相关信息:
谷歌搜索 百度搜索 360搜索 雅虎搜索 搜狗搜索 搜搜搜索 必应搜索 有道搜索
你可能还喜欢以下文章
  • 1王梦溪未经处理照曝光 王梦溪口...
  • 22013最新门事件 警花王梦溪不雅...
  • 3白富美!特朗普大女儿伊万卡才...
  • 4王梦溪未经处理雅照120P完整艳...
  • 5如何做爱真人示范图片 男女ML常...
  • 12016年最新成年身份证号码大全...
  • 2如何设置三级优德w88官网?二级优德w88官网三...
  • 3DEDE"模板文件不存在,无法解...
  • 4帝国CMS中网站URL路径栏目目录...
  • 5首页flash幻灯片不显示解决方法...
  • 1最流行的性交姿势图解 真人示范...
  • 2什么姿势女的最爽?最刺激的做...
  • 3王梦溪种子完整版 王梦溪1.08G...
  • 4合肥艳照门事件 合肥艳照门全套...
  • 5江苏镇江郦荟艳照门 郦荟自拍高...
  • 1Linux操作系统下的安全问题研究...
  • 2linux服务器在运行210天左右宕...
  • 3名词解释:分布式拒绝服务攻击...
  • 4如何做服务器安全维护?有哪些...
  • 5通过组策略和注册表关闭win7 U...
  • 赞助商广告

    图片文章导读